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Abstract
We study the dynamics of a kink in a one-lane asymmetric simple exclusion
process with detachment and attachment of particles at arbitrary sites. For
a system with one site of detachment and attachment we find that the kink
is trapped by the site, and the probability distribution of the kink position
is described by the overdumped Fokker–Planck equation with a V-shaped
potential. When the detachment and attachment take place at every site, we
confirm that the kink motion is equivalent to the diffusion in a harmonic
potential. We compare our results with the Monte Carlo simulation, and check
the quantitative validity of our theoretical prediction of the potential form.

PACS numbers: 02.50.−r, 05.40.−a

1. Introduction

An asymmetric simple exclusion process (ASEP) is a stochastic process on a one-dimensional
lattice where a particle drifts when the site to visit is empty. Recently much attention has been
paid to ASEP [1–3], not only because there exists the exact solution under the open boundary
condition [4–7], but also it is applicable to various transportation phenomena. In particular, the
uni-directional ASEP which is called a totally asymmetric simple exclusion process (TASEP)
has been studied extensively, because (i) TASEP is the simplest ASEP and (ii) TASEP keeps
the essence of nonequilibrium transport processes such as the exclusion interaction between
particles and the drift of particles. In fact, TASEP may be regarded as a simplified model of
traffic flow [8].

ASEP is also a relevant model for the description of biological problems. TASEP is first
introduced as a model to explain the process of creation of the messenger RNA [9] in 1968.
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Recently, the model with detachment and attachment on each site in ASEP with open boundary
conditions has been introduced in the context of describing the collective motion of molecular
motors on the microtubules [10, 11]. TASEP with detachment and attachment on each site
under open boundary conditions in the thermodynamical limit is studied by Parmegianni et al
[12]. Hereafter, we call one-dimensional TASEP with detachment and attachment under open
boundary conditions the PFF model named after the authors of [12], Parmegianni, Franosch
and Frey. An extended model of the PFF model is used to describe an intra-cellular transport
of the single-headed kinesin (KIF1A) motor [13].

In the open boundary ASEP without detachment and attachment, we can draw a phase
diagram by the incoming rate and outgoing rate at the boundaries. On the phase boundary
between the low-density phase and high-density phase, it is known that the kink between a
sparse region and a jammed region obeys the Brownian motion. This kink motion in one-lane
ASEP is also studied in terms of the domain wall theory [14–16] and the second-class particle
[17–19]. The kink motion in a two-lane TASEP is studied in [20], and the kink motion in the
PFF model is studied in [21–24]. It is known that the kink is trapped by a harmonic potential in
the PFF model [21, 22], which is derived by the theoretical argument of continuous equations
in the limit of zero lattice spacing.

The effect of detachment of particles at a site in the centre of the system has been studied
in [25]. Evans et al [26] studied a system with several sites of detachment and attachment and
found the exact solution when the both detachment rate and attachment rate are much larger
than the drift rate by keeping the constant ratio of detachment rate to attachment rate. In their
case, however, the kink is no longer stable.

In this paper, we find that the attractive potential to the kink is a linear function of distance
from the site of detachment and attachment in TASEP. When we generalize the model to
TASEP with many sites of detachment and attachment, we confirm that the kink feels the
linear combination of the linear potentials for the one site of detachment and attachment. It is
noted that our model discussed in this paper includes TASEP and PFF model, which has not
been discussed by anyone.

The paper is organized as follows. In the next section, we first introduce the model with
detachment and attachment at one site. We present a theory of a kink motion in TASEP with
detachment and attachment at one site, and extend our analysis to the kink motion in TASEP
with detachment and attachment at many sites. In section 3, we compare our analysis with the
Monte Carlo simulation and confirm the quantitative agreement between the theory and the
simulation. Finally, we give a discussion and conclude this paper in section 4.

2. The kink motion

2.1. TASEP with one site of detachment and attachment

Let us explain TASEP with detachment and attachment of particles at one site under open
boundary conditions. TASEP is defined on a one-dimensional lattice of L sites. Each particle
hops forward when the front site is empty. Here we choose right as the drift direction of
particles. The open boundary condition is specified by the attachment rate of particle α at the
left end of the system and the detachment rate of particle β at the right end. Here, the particle is
also detached by the rate wd and attached by the rate wa at the site x0. TASEP with detachment
at one site has first been introduced in [25]. In their analysis, they divide the system into two
systems of TASEP by the site x0 which is fixed to the centre of the system, and introduce
the effective hopping rate to connect the two systems. However, their analysis cannot explain
the kink motion because the kink in TASEP moves under the reflective boundary condition
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of a virtual boundary in a subsystem and the kink Cannot cross through the virtual boundary
between two subsystems. Thus we need another method to explain the effect of detachment
and attachment to the kink motion.

The Brownian motion of the kink is characterized by the two parameters: the drift velocity
VT and the diffusion constant DT . In the case of TASEP, VT and DT are respectively written
as [19]

VT = 1 − λ� − λr and DT = λ�(1 − λ�) + λr(1 − λr)

2(λr − λ�)
, (1)

where λ� and λr are the density in the left and in the right, respectively. Thus once λ� and λr

which satisfy λ� < λr are known, the motion of the kink is determined.
It is known that the Brownian motion in a potential U(x) is written by the Langevin

equation

dx

dt
= −∂U(x)

∂x
+ ζ(t), (2)

where ζ(t) is the random force which satisfies

〈ζ(t)〉 = 0 and 〈ζ(t)ζ(0)〉 = 2Dδ(t), (3)

where δ(t) is Dirac’s delta function. The corresponding Fokker–Planck equation to
equation (2) is

∂P (x, t)

∂t
= ∂

∂x

(
∂U(x)

∂x
+ D

∂

∂x

)
P(x, t), (4)

where P(x, t) is the probability distribution of the Brownian particle at position x at time t.
Equation (4) has the steady solution Pst (x)

Pst (x) = C exp

[
−U(x)

D

]
, (5)

where C is the normalization constant. We expect that this result can be used to describe the
steady distribution of the kink in TASEP with detachment and attachment.

For TASEP without detachment and attachment, λ� and λr satisfy

λ� = α and λr = 1 − α (6)

for α = β < 1/2. From equation (1), VT and DT are respectively given by

VT = 0 and DT = α(1 − α)

1 − 2α
. (7)

If there is a site with detachment and attachment, the phase diagram may be modified
from that of the original TASEP. However the difference is expected to be small for small rate
of detachment and attachment (wa ∼ wd � 1). Thus the kink picture may be still valid for
α = β � 1/2.

Let us consider the kink motion in TASEP with detachment and attachment at one site.
If there is no detachment and attachment of particles, λ� and λr are given by equation (6).
However, as a result of detachment and attachment, the density is deviated from equation (6).
There are two cases for the deviation of the density: (a) the site with detachment and attachment
in the low-density region and (b) the site in the high-density region.

Let us consider the case (a). The change of the density in terms of detachment and
attachment can be neglected in the region left of x0, while the density in the right of x0

becomes higher (figure 1(a)). In fact, when the density around the site with detachment and
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Figure 1. A schematic picture of the kink motion in TASEP with one site of detachment and
attachment. Figure (a) shows the case when x0 is in the low-density region, and figure (b) shows
the case when x0 is in the high-density region. The line shows the density profile. This density
profile is drawn by the ensemble average after the position of the kink is specified.

attachment ρ is low, the attach current wa(1 − ρ) is much larger than the detach current wdρ

for wa ∼ wd . We introduce ρ+ as the density in the right of x0 when x0 is in the low-density
region. Thus λ� is λ� = ρ+ while λr = 1 − α is unaffected. It should be noted that this
argument is only valid for the case of wd ∼ wa . If we assume wa � wd , then the density in
the right of x0 is lower than that in the left. In this case, the kink might feel a repulsive force
from x0. However, we do not discuss such cases here. Although one might expect that traffic
jams propagate to the left, nobody has found a stable jammed domain in ASEP and no traffic
jams propagate.

When x0 is in the high-density region as in case (b), the density profile is modified as
in figure 1(b). In this case, the density in the right of x0 is little changed by detachment and
attachment but the density in the left of x0 is changed by detachment and attachment. For the
case the density around the site with detachment and attachment ρ is high, the detach current
wdρ is much larger than the attach current wa(1 − ρ) for wa ∼ wd . Thus λ� and λr are
replaced by λ� = α and λr = ρ− when x0 is in the high-density region of the kink.

Now, let us determine the value of ρ− and ρ+. Since the exact solution in the steady state
of this model is not known, we adopt the decoupling approximation in which the currents J�

in the low-density region and Jr in the high-density region are given by J� = λ�(1 − λ�) and
Jr = λr(1 − λr), respectively. The decoupling approximation is the approximation that the
two-point function 〈τj τj+1〉 is given by the product of one point functions 〈τj 〉〈τj+1〉, where
〈· · ·〉 is the average by the probability of finding the system in the state {τ1, . . . , τL} with
τj = 0, 1.

To estimate ρ+ and ρ−, we use the current conservation at the position x0. For the case
that x0 is in the low-density region of the kink, the current from the left of x0 is α(1 − α) and
the current to the right of x0 is ρ+(1 − ρ+). The detach current from x0 is wdρ+ and the attach
current at x0 is wa(1 − ρ+). Thus the equation of the current balance at x0 is given by

α(1 − α) + wa(1 − ρ+) = wdρ+ + ρ+(1 − ρ+). (8)

The solution of (8) is simply given by

ρ+ = 1 + wa + wd −
√

(1 + wa + wd)2 − 4wa − 4α(1 − α)

2
. (9)

Here we use the condition that ρ+ should be reduced to (6) for wa = wd = 0. Similarly, the
current balance equation of ρ− is written as

ρ−(1 − ρ−) + wa(1 − ρ−) = wdρ− + α(1 − α), (10)

and its solution is given by

ρ− = 1 − wa − wd +
√

(1 − wa − wd)2 + 4wa − 4α(1 − α)

2
. (11)
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From equation (1) with the consideration around figure 1, the drift velocities V± are
given by

V+ = α − ρ+ and V− = 1 − α − ρ−. (12)

Similarly the diffusion constants D± are given by

D+ = α(1 − α) + ρ+(1 − ρ+)

2(1 − α − ρ+)
and D− = α(1 − α) + ρ−(1 − ρ−)

2(ρ− − α)
. (13)

Here the quantities with the suffix +/− represent those in the right/left of x0. Using
λ� = α, λr = ρ− for x < x0 and λ� = ρ+, λr = 1 − α for x > x0, the steady solution
of the Fokker–Planck equation can be written as

P(x) = C ′ exp

[
V−
D−

(x − x0)θ(x0 − x) +
V+

D+
(x − x0)θ(x − x0)

]
, (14)

where C ′ is the normalization constant, and θ(x) = 1 for x > 0 and θ(x) = 0 otherwise.
For w = wa = wd , the relations

ρ− = 1 − ρ+, |V+| = |V−| and D+ = D− (15)

are satisfied. Thus the solution (14) becomes

P(x) = C ′ e− V
D

|x−x0|, (16)

where V = |V−| = |V+| and D = D+ = D−. From the comparison of equation (5) with
equation (16), the potential energy U(x) is given by

U(x) = V |x − x0|. (17)

This is one of the main results in this paper. The validity of our theory will be confirmed by
the Monte Carlo simulation in section 3.

2.2. TASEP with many sites of detachment and attachment

Here we generalize the model in the previous subsection to a model with many sites of
detachment and attachment. To ensure the domain wall picture, we assume that w

.= wa = wd

are small and the relations equation (15) are satisfied. Substituting the expansion ρ+ in terms
of w

ρ+ � α + w + · · · (18)

into equation (12), we obtain

V = w. (19)

In this linear regime, we can obtain the probability function of the kink in TASEP with many
sites of detachment and attachment.

Let us consider the system with N sites of detachment and attachment. Here we see that
the system is divided into N + 1 segments in which each segment is bounded by the sites with
detachment and attachment or the boundaries.

When the kink is located in the j th segment, the number of sites with detachment and
attachment in the left of the kink is j − 1. For each site of detachment and attachment, the
current should be conserved. The density increases by w in the low-density region as in
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equation (18) in each segment. Thus the density λ� in the j th segment becomes λ� = α +
w(j − 1). On the other hand, the number of sites with detachment and attachment in the right
of the kink is N − j + 1. Then the density λr in the j th segment is λr = 1−α −w(N − j + 1).
Therefore, the drift velocity Vj and the diffusion constant Dj in the segment j are respectively
given by

Vj = w{N − 2(j − 1)}, (20)

and

Dj = 2α(1 − α) + (1 − 2α)wN + w2((N − j)2 + j 2)

2(1 − 2α − wN)
. (21)

We can eliminate j -dependence in equation (21) by neglecting the term proportional to w2.
Thus the diffusion coefficient is reduced to

D = 2α(1 − α) + (1 − 2α)wN

2(1 − 2α − wN)
, (22)

which is independent of j . From equation (5), the kink probability distribution Pj (x) in the
segment j is given by

Pj (x) = Cj exp

[
−2w(N − 2(j − 1))(1 − 2α − wN)

2α(1 − α) + (1 − 2α)wN
(x − xj )

]
, (23)

where Cj is a constant determined from the normalization and the compatibility relation

Pj (xj ) = Pj+1(xj ). (24)

Thus we obtain the formula equation (23) applicable to TASEP with any number of sites
with detachment and attachment. It should be noted that the denominator in the exponential
function in equation (23) contains wN . This is because we simply substitute D in equation (22)
into equation (5). It may be controversial to contain wN in the denominator in the systematic
approximation, but this expression gives us the accurate result as will be shown later.

This method is also applicable to the PFF model [12] where the number of detachment
and attachment sites N is N = L and the position of the site of detachment and attachment xj

is xj = j . Thus the distribution (23) is reduced to Pj (j) = Cj . We write Pj = Pj (j) for the
simplification. The compatibility relation (24) becomes

Cj = Cj−1 exp

[
w(L − 2(j − 1))

D

]
, (25)

and this recursion relation gives

Cj = C1 exp

[
w

D

j−1∑
m=1

(L − 2m)

]
. (26)

Thus the distribution function becomes

Pj = C1 exp

[
w

D

{
−

(
j − L + 1

2

)2

+
(L − 1)2

4

}]
. (27)
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Figure 2. Comparison of the distribution of the kink position between the simulation (×) and
the solution of the Fokker–Planck equation (solid line).The horizontal axis is the kink position
and the vertical axis is the distribution function of the kink position in the steady state plotted in
the semi-log scale. The parameters used are α = β = 0.1 and wa = wd = 0.01 for (a), and
α = β = 0.1, wa = 0.02 and wd = 0.01 for (b). We set the system length L = 200 and the
position of detachment and attachment occurs at x0 = 100.

This result can be also derived by the superposition of the potential. The harmonic
potential is realized by the superposition of the potential (17) as

UPFF(j) =
L∑

x0=1

w|j − x0| � w

(
j − L + 1

2

)2

+ · · · . (28)

Thus the distribution of the kink position is given by

PPFF(j) = C ′′ exp

[
−w

D

(
j − L + 1

2

)2
]

, (29)

where D is given by equation (22), and the probability distribution function of the kink position
(29) is identical to equation (27).

3. Simulations

Now let us check the quantitative accuracy of our theoretical argument. We compare our
analysis with the results of the Monte Carlo simulations. The simulation is carried out by the
random update scheme [3, 27] which is realized by choosing a bond between two neighbouring
sites at random in the time interval dt and moving the particle to the front site.

We use the motion of the second-class particle which is a tracer particle to detect the kink
position [17–19]. If we write 0 for a hole (empty site), 1 for a particle and 2 for the second
class particle, the second class particle moves as (2, 0) → (0, 2) and (1, 2) → (2, 1). The
hole is moved to the left of the second class particle, and the particle is moved to the right of
the second class particle. Thus the second class particle is positioned between the low-density
region and the high-density region. Thus the second class particle can detect the kink position.
We compare the probability function of the kink position obtained by the simulation with the
distribution function (14).

As shown in figure 2, we obtain good agreement between the simulation and the theoretical
results in equation (14). We plot the results of our simulation by × and the solution of the
Fokker–Planck equation by the solid line. The horizontal axis is the kink position and the
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Figure 3. Comparison of the probability distribution of the kink position between the simulation
and the solution of the Fokker–Planck equation (solid lines) in equation (23) for the case which has
2(×), 3(+) and 4(∗) sites of detachment and attachment. The horizontal axis is the kink position
and the vertical axis is the probability function of the kink position in the steady state plotted in
the semi-log scale. The parameters used are α = β = 0.1 and w = 0.01, and the positions of sites
with detachment and attachment are x1 = 50, x2 = 150 for N = 2, xi = 50i, (i = 1, 2, 3) for
N = 3 and xi = 40i, (i = 1, 2, 3, 4). We set the system length L = 200.
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Figure 4. Comparison of the probability distribution of the kink position between the simulation
(×) and the solution of (equation (23)) the Fokker–Planck equation (solid line) of PFF model.
The horizontal axis is the kink position and the vertical axis is the distribution function of
the kink position in the steady state plotted in the semi-log scale. The parameters used are
α = β = 0.1, w = 0.0001 and L = 200.

vertical axis is the probability distribution function of the kink position in the steady state.
In figure 2(a), the parameter is set to be wa = wd and the distribution function is symmetric
around x = x0. In figure 2(b), the parameter is set to be wa 	= wd and the distribution function
is asymmetric around x = x0. In both cases, the boundary parameters are set to be α = β = 0.1
and the system length L is L = 200. In figure 3, we compare the theoretical results with the
results of our simulation in cases of 2, 3 and 4 sites with detachment and attachment. The
parameters used in this case are α = β = 0.1 and w = 0.01, the position of sites with
detachment and attachment are x1 = 50, x2 = 150 for N = 2, xi = 50i, (i = 1, 2, 3) for
N = 3 and xi = 40i, (i = 1, 2, 3, 4). The results of our simulation are plotted by × for
N = 2, + for N = 3 and ∗ for N = 4, and the theoretical results are plotted in the solid
lines. In figure 4, we compare the theoretical results with the simulation results in the PFF
model. The parameters at the boundaries are α = β = 0.1 and w = 0.0001. The results of
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our simulation give quite good agreement with the theoretical prediction in equation (23) in
all cases.

4. Discussion and conclusion

Now let us discuss our results. Although our analysis is not rigorous, the accuracy of our result
has been verified by the numerical simulations. Thus we need to explain why we obtained
good results. In this paper, we adopt two approximations: the domain wall theory and the
decoupling approximation in each domain.

We use domain wall theory (DWT) in determining D and V . It is not proven whether we
may adopt the rigorous result in ASEP [17–19] here. We expect that DWT can be used for
small enough α and w.

We use decoupling approximation in section 2 to determine ρ±. We cannot measure the
correlation of the low/high region directly in the kink diffusion, however we can measure
the correlation in the low/high density region with the kink position fixed. In the low/high
density region, a flat density profile is realized, and the decoupling approximation gives a good
approximation.

We derived the distribution function of the kink in the PFF model, which is also derived
in [21]. The prefactor w

D
of

(
j − L+1

2

)2
in equation (29) differs from the result in [21] only by

the order of w2L2 which is small and is neglected in this paper. This also supports the validity
of our results.

We have demonstrated that the kink motion in TASEP with detachment and attachment
can be described by the Brownian motion under the influence of the attractive force from the
sites where detachment and attachment take place. We have obtained the attractive potential
to the kink and the diffusion constant of the kink. We demonstrate that the superposition of
the potentials of our model gives good results for any number of sites with detachment and
attachment when the rates of detachment and attachment are small. We compare our result
with the simulation and have confirmed that our theoretical prediction of our theory gives
quantitatively correct results. We also explain why the kink in the PFF model feels a harmonic
potential [21, 22], and succeed the quantitative estimation of the potential.
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